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Constant-density electrically conducting fluid is confined to a rapidly rotating spher-
ical shell and is permeated by an axisymmetric magnetic field. Slow steady non-
axisymmetric motion is driven by a prescribed non-axisymmetric body force; both
rigid and stress-free boundary conditions are considered. Linear solutions of the gov-
erning magnetohydrodynamic equations are derived in the small Ekman number E
limit analytically for values of the Elsasser number Λ less than order unity and they
are compared with new numerical results. The analytic study focuses on the nature
of the various shear layers on the equatorial tangent cylinder attached to the inner
sphere. Though the ageostrophic layers correspond to those previously isolated by
Kleeorin et al. (1997) for axisymmetric flows, the quasi-geostrophic layers have a new
structure resulting from the asymmetry of the motion.

In the absence of magnetic field, the inviscid limit exhibits a strong shear singularity
on the tangent cylinder only removeable by the addition of viscous forces. With
the inclusion of magnetic field, large viscous forces remain whose strength Z was
measured indirectly by Hollerbach (1994b). For magnetic fields with dipole parity,
cf. Kleeorin et al. (1997), Z increases throughout the range Λ � 1; whereas, for
quadrupole parity, cf. Hollerbach (1994b), Z only increases for Λ� E1/5.

The essential difference between the dipole and quadrupole fields is the magnitude
of their radial components in the neighbourhood of the equator of the inner sphere. Its
finite value for the quadrupole parity causes the internal shear layer – the Hartmann–
Stewartson layer stump – to collapse and merge with the equatorial Ekman layer
when Λ = O(E1/5). Subsequently the layer becomes an equatorial Hartmann layer,
which thins and spreads polewards about the inner sphere surface as Λ increases
over the range E1/5 � Λ � 1. Its structure for the stress-free boundary conditions
employed in Hollerbach’s (1994b) model is determined through matching with a new
magnetogeostrophic solution and the results show that the viscous shear measured
by Z decreases with increasing Λ. Since Z depends sensitively on the detailed
boundary layer structure, it provides a sharp diagnostic of new numerical results for
Hollerbach’s model; the realized Z-values compare favourably with the asymptotic
theory presented.

1. Introduction
1.1. General remarks

In recent years, there has been considerable progress in our understanding of the
geodynamo problem. The numerical modelling has reached a stage at which compar-
isons can be made with observational data. At its simplest level the Earth’s fluid core
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is a rapidly rotating spherical shell (constant rotation rate Ω∗) filled with electrically
conducting fluid in slow relative motion. Motion is driven by buoyancy forces, which
may be either thermal or compositional. As a consequence of the rotational con-
straints in the small Ekman number limit (E � 1, see (1.1) below), such convection is
generally non-axisymmetric. Through nonlinear mechanisms axisymmetric flows can
also be generated possibly through thermal winds and Lorentz forces. The geodynamo
problem concerns both the generation of the magnetic field permeating the fluid by
magnetic induction as well as the back reaction of the magnetic field on the flow by
the Lorentz force. Recent reviews are given by Hollerbach (1996a) and Fearn (1997).

All recent fully three-dimensional numerical integrations of convection-driven geo-
dynamo models (including Glatzmaier & Roberts 1995a, b, 1996a, b, 1997; Kuang &
Bloxham 1997, 1999; Christensen, Olson & Glatzmaier 1998; Kitauchi & Kida 1998;
Sarson, Jones & Longbottom 1998; Sakuraba & Kono 1999; Sarson & Jones 1999)
have drawn attention to the importance of the tangent cylinder with generators par-
allel to the rotation axis, which touches the inner core at its equator. This is because
the rotational constraints, imposed as a consequence of the Proudman–Taylor theo-
rem, cause the convection above and below the inner solid core, inside the tangent
cylinder, to have a different character to that outside the tangent cylinder (Busse &
Cuong 1977). It is also a consequence of these differences that the nonlinearly excited
axisymmetric flows exhibit similar differences. This is evident, for example, in the
numerical integrations of axisymmetric mean field models (Anufriev & Hejda 1998,
1999).

In view of the partitioning of the flow by the tangent cylinder into an interior polar
region and an exterior equatorial region, some complicated shear layer structure is
to be expected on the tangent cylinder itself. Such axisymmetric shear layers have
been studied largely within the context of small differences of the angular velocity
between the solid inner core and outer rigid mantle. Glatzmaier & Roberts’ (1995a)
numerical geodynamo simulations indicated super-rotation of the inner core which
was subsequently confirmed by seismic data (Song & Richards 1996). One possible
explanation of the mechanism has been given by Aurnou, Brito & Olson (1996).

Hollerbach (1996b) undertook an analytic investigation of the MHD shear layers
due to boundaries in relative motion in a simplified plane layer geometry in the spirit
of Stewartson’s (1957) pioneering non-magnetic study. Numerical studies in the true
spherical shell geometry with an applied axial dipole magnetic field by Hollerbach
(1994a) and Dormy, Cardin & Jault (1998) reveal a rich boundary layer structure,
which is partially explained by Hollerbach’s (1996b) results. Further clarification
followed from Kleeorin et al.’s (1997) (subsequently referred to as K-S) asymptotic
analysis of the shear layers in the spherical shell; this provided the MHD extension
of Stewartson’s (1966) seminal paper.

As a preliminary step towards understanding non-axisymmetric shear layers,
Hollerbach & Proctor (1993) assumed that the buoyancy force which drives convection
is prescribed rather than determined as the solution of the heat conduction equation.
They then considered the non-axisymmetric flow driven by that non-axisymmetric
force alone. In terms of our dimensionless units of § 1.2, they found the velocity
u driven by the force f that solves the inhomogeneous geostrophic balance equa-
tion

2ẑ×u = −∇p+ f (∇ · u = 0).

Though it is known that such non-axisymmetric flows are unique (Greenspan 1968),
they unexpectedly found that the flow generally exhibits singular behaviour mani-
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fested as jets on the tangent cylinder. This must be contrasted with the axisymmetric
case for which motion is determined up to the addition of an arbitrary axisymmetric
geostrophic flow and then only when the azimuthal couple produced by the force
on geostrophic cylinders vanishes. In the MHD context this is known as Taylor’s
condition (1963).

Evidently the singularity on the tangent cylinder may be removed by the addition
of viscous effects. Nevertheless, this leaves shear layers whose intensity increases
as the Ekman number decreases to zero (E ↓ 0). Hollerbach (1994b) (subsequently
referred to as H94) considered the alternative possibility that with the inclusion of a
magnetic field the Lorentz force can remove the singularity. He therefore considered
numerically, for various small values of E, the influence of an applied magnetic field of
moderate strength as measured by the Elsasser number Λ (see (1.1) below). Certainly
his evidence for Λ of order unity and larger suggested that the magnetic field has a
smoothing influence.

In this paper we investigate H94’s problem analytically at small Elsasser number.
Perhaps the most striking feature of our results is that, with increasing field strength at
fixed small E, the tangent-cylinder shear layers intensify until Λ achieves a sufficiently
large value at which all trace of internal (as opposed to boundary) viscous layers
has evaporated. The analysis closely parallels the earlier study by K-S. Many of
the parameter ranges and boundary layer structures identified in K-S have their
counterparts here; nevertheless, there are important non-trivial differences that emerge
from the non-axisymmetry. Essentially, the most pronounced effect at small Elsasser
number 1 � Λ � E1/3 is the two-dimensionality imposed by geostrophy. It means
that the singular behaviour triggered at the inner sphere equator is transmitted over
the entire tangent cylinder. Though the magnetic field leads to significant smoothing of
the zonal shear flow velocity, when E1/2 � Λ, in relatively large magnetotopographic
and magnetogeostrophic regions, considerable gradients of the shear remain in viscous
sublayers, whose radial length scale decreases with increasing Λ so exacerbating the
shear singularity. For E3/7 � Λ � E1/3, the viscous region is dominated by a
Hartmann layer covering the entire tangent cylinder. While for Λ� E1/3 it detaches
from the outer sphere and becomes a Hartmann–Stewartson layer stump attached to
the equator of the inner-sphere. It is only after the stump has shrunk completely into
the inner-sphere Ekman–Hartmann boundary layer that the intensity of the tangent
cylinder shear, as measured by Z (see (1.9) below), begins to decrease.

Though our analytic results are compatible with H94’s numerics at the relatively
large values of Λ employed there, further numerical results at smaller Elsasser number
are presented here to support the trends predicted by our theory. The central difficulty
in making any quantitative comparison is the extremely small values of E and
Λ necessary for the validity of the asymptotics. Nevertheless, we clearly identify
the nature of the mechanisms which characterize the transition from increasing to
decreasing Z on the tangent cylinder. The isolation of these processes is central to
our understanding of the role of the tangent cylinder in Earth’s core dynamics.

We remark that the numerical results presented here and in H94 assume that
the region outside the shell is an electrical insulator, but note that none of our
analytic results depend on the electrical conductivity of the boundaries correct to the
order taken. This is in stark contrast to the axisymmetric flow driven by differentially
rotating the inner and outer spheres, for which any interior motion depends on viscous
and electromagnetic coupling with the boundary. In that case, it is well known that
the resulting flow for insulating and perfectly conducting boundaries is very different.
The reason why our asymmetric motions are insensitive is that they respond directly
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to the applied body force and any dependence on boundary conductivity is restricted
to low-order features of the surface boundary layers.

1.2. Mathematical formulation

Relative to the frame rotating with angular velocity Ω∗ in which the shell is at rest,
asymmetric steady flow velocity U∗u is forced by the body force Ω∗U∗f per unit
mass. The electrically conducting fluid of constant density ρ, kinematic viscosity ν,
magnetic diffusivity η is permeated by an applied axisymmetric magnetic field B∗b.
The magnetically insulating boundaries are located at radii L∗ri (inner) and L∗ro
(outer); following H94, L∗ is the shell gap width (ro − ri := 1) (see figure 1). Our
detailed calculations are for the case of stress-free boundaries, though some of the
implications for rigid boundaries will be noted.

We adopt L∗, U∗ and B∗ as our units of length, velocity and magnetic field.
Our system is characterized by the Rossby, Ekman, magnetic Reynolds and Elsasser
numbers

Ro :=
U∗

L∗Ω∗
, E :=

ν

L∗2Ω∗
, Rm :=

L∗U∗

η
and Λ :=

σB∗2

ρΩ∗
, (1.1a–d )

where σ = 1/µη is the electrical conductivity. We restrict attention to the slow flow
limit

Ro� 1, Rm� 1. (1.2a,b)

Accordingly we write the total magnetic field in the form b + Rmb. Linearization of
the governing equations yields the system

2ẑ×u = −∇p+ fM + E∇2u+ f (∇ · u = 0), (1.3a)

0 = ∇× (u×b)+ ∇2b (∇ · b = 0), (1.3b)

where the ‘hat’ is used to denote unit vector,

fM = Λ[(∇×b)×b+ (∇×b)×b] (1.3c)

is the Lorentz force and p is the dimensionless pressure. It is helpful to regard the
solution b of (1.3b) for given u subject to appropriate boundary conditions as a
functional of u. In turn (1.3c) determines fM as a functional of u also:

fM[u]. (1.3d )

We adopt cylindrical polar coordinates (s, φ, z) and consider only applied body
forces f that lead to flows with the symmetry(

us, uφ, uz
)

(s, φ,−z) =
(
us, uφ,−uz) (s, φ, z). (1.4)

We limit our mathematical description to the Northern hemisphere with outer and
inner boundaries z = zT (s) and z = zB(s) defined by

zT := zo and zB :=

{
zi for s < ri
0 for s > ri,

(1.5a)

where zo(s) =
√
r2
o − s2 and zi(s) =

√
r2
i − s2 define the z-coordinates of the outer and

inner spheres. We denote their separation by

H(s) := zT − zB and introduce Hi := H(ri) (1.5b)
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Figure 1. One quadrant of the shell geometry. The inner and outer spheres radii ri and ro
respectively are shown together with the tangent cylinder height Hi identified by the broken line.

(see figure 1). On each boundary z(s), we define normals

n :=

(
−dz

ds
, 0, 1

)
. (1.5c)

For our spherical shell geometry they are

nT :=
r

zT
and nB :=

{
r/zB for s < ri
ẑ for s > ri,

(1.5d )

where r = (s, 0, z) is the radius vector. At the very least, our flow velocity satisfies the
boundary condition

u · n = 0 on both boundaries z = zT and zB. (1.5e)

There are, of course, further conditions dependent on the nature of the boundaries,
e.g. stress free or rigid, and electrically insulating or conducting.

Hollerbach & Proctor (1993) noted that, whereas generally (1.5e) is a single bound-
ary condition, it becomes two at the equator of the inner sphere, where to avoid
discontinuities the double condition

ẑ · u = ŝ · u = 0 at s = ri, z = 0 (1.6)

must be met. On the basis of the boundary condition (1.5e) alone, they noted that an
implication of the double condition (1.6) is

G[ẑ×u] = 0 (1.7a)

for solenoidal u, where the functional G[F ], for some given vector field F , is defined
by

G[F ] :=

[
Hi

∫ Hi

0

ẑ · (∇×F ) dz + ri

∫ Hi

0

ŝ · (∇×F ) dz

]
s=ri

(1.7b)

with Hi = H(ri). So upon application of G to the governing equation (1.3a), they
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showed that

A :=AM +Aν +Af = 0, (1.8a)

where

Af := G[f], Aν := G[E∇2u], AM := G[fM]. (1.8b)

In the absence of viscous and magnetic forces (E = Λ = 0), they pointed out that, for
a given applied force f, the integral A =Af is generally non-zero. By implication it
is not possible to satisfy both conditions (1.6) simultaneously and as a result the flow
exhibits a singularity on the tangent cylinder.

For finite values of the Ekman number (E 6= 0), the condition (1.6) and consequently
(1.8a), namely A = 0, is met by all physically realistic boundary conditions, so
removing the singularity. For small E and in the absence of magnetic field (Λ = 0),
however, large velocity gradients are expected to remain in shear layers on the tangent
cylinder. This is confirmed by the numerical integrations reported both by Hollerbach
& Proctor (1993) and H94. To investigate the extent to which the magnetic field can
weaken the shear layers when Λ 6= 0, H94 considered the value of the ratio

Z :=

∣∣∣∣Af +AM

Af

∣∣∣∣ =

∣∣∣∣Aν

Af

∣∣∣∣ . (1.9)

As the identity shows, Z is really a measure of the size of the viscous force. Therefore
its value depends on the character of the viscous layers and its evaluation provides a
focal point for our boundary layer study. H94 found thatZ, at fixed E, is a decreasing
function of Λ for the moderate values considered and so argued that the Lorentz
force smooths out the discontinuity. Actually, the story is more complicated in the
weak magnetic field limit

E � 1, Λ� 1 (1.10a,b)

to which we restrict analytic attention here and is also dependent on whether the
applied magnetic field has dipole or quadrupole parity. We will, therefore, consider
both the dipole field investigated by K-S, and the quadrupole field of H94.

1.3. Summary of results

Our paper is organized as follows. In § 2 we re-cap the main points of Hollerbach &
Proctor’s (1993) inviscid non-magnetic analysis Λ = 0 for which Z = 1. That value
gives the baseline about which the magnetic results Λ 6= 0 are judged.

The schematic figure 2 summarizes the radial extent of the various tangent cylinder
boundary layers as a function of Λ. The pervading picture for all Λ (� 1) is that
of thick quasi-geostrophic layers, largely z-independent, which match to the external
mainstream non-magnetic inhomogeneous geostrophic flow (2.1c) and contain inside
them fully three-dimensional ageostrophic sublayers.

In § 3 we formulate the quasi-geostrophic boundary layer equations which, due to
the asymmetric nature of the flow, differ significantly from those considered by K-S for
the axisymmetric case. Specifically, they are fourth- rather than second-order ordinary
differential equations, which generally reveal a double layer structure. Nevertheless,
for Λ � E1/2 (E3/7), the layer on the exterior equatorial § 4.1 (interior polar § 4.2)
side continues to be simply a magnetotopographic variant of the viscous E1/4 (E2/7)-
Stewartson layer. When Λ � E1/2 (E3/7) the layer splits into a thicker inviscid
Λ1/2 (Λ2/3)-magnetotopographic layer for Λ � 1 and a thinner viscous (E/Λ)1/2-
Hartmann layer for Λ� E1/3. Though the Lorentz force in the magnetotopographic
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Figure 2. A schematic diagram locating the radial s-extent of the tangent-cylinder shear
layers for various values of Λ in the case of magnetic fields with quadrupole parity. The
quasi-geostrophic domains of the E1/4, E2/7-Stewartson (S), the (E/Λ)1/2-Hartmann (H) and the

Λ1/2, Λ2/3-magnetotopographic (MT) layers all lie outside the continuous lines but are bounded at
their extremities by the mainstream inhomogeneous geostrophic (IG) flow domains. Inside lie the
ageostrophic domains of the E1/3-Stewartson (S), the Hartmann–Stewartson stump (HS) and the
Λ-magnetogeostrophic (MG) layers. Equatorial and polar domains are distinguished by the sub-
scripts e and p and their boundaries are marked by broken lines. The existence of E2/5-equatorial
Ekman (EE) and the (E/Λ)1/2-equatorial Hartmann (EH) layers is marked by the large and small
dots respectively along the line s = ri.

layers partially smooths out the shear structure, considerable shear gradients remain
in the viscous sublayers which are exacerbated by the shortenning Hartmann length
scale. Consequently, the solutions obtained in § 4 show, contrary to the suggestion by
H94, that Z is an increasing function of Λ throughout the range Λ� E1/3 (see (4.8)
and (4.37)).

In § 5.1 the ageostrophic sublayer problem is formulated. It is noted that non-
axisymmetric effects are unimportant and so motion is governed, as in K-S, by
equations (5.4). When Λ = E1/3, the quasi-geostrophic Hartmann-layer merges with
the E1/3-Stewartson layer. For larger values of Λ, the ageostrophic layer splits into
two. On the one hand, the outer inviscid Λ-magnetogeostrophic layer § 5.2.1 thickens
and matches externally with the magnetotopographic layer, as exemplified by the
formulation (5.3). On the other, the thinning viscous Hartmann–Stewartson layer
§ 5.2.2 detaches itself from the outer sphere boundary forming a shrinking stump
attached to the equator of the inner sphere. Since the size of the stump is sensitive
to the magnitude of the radial magnetic field near the equator, there are significant
differences between dipole and quadrupole parity fields. Very large shear gradients
are maintained in the stump causing Z to continue to increase. For dipole parity, the
stump persists throughout the range E1/3 � Λ� 1 with the corresponding increasing
value of Z for model K-S being given by (5.28).

The ageostrophic flow in the vicinity of the inner-sphere equator for model H94
with quadrupole parity is discussed in § 6. Analytic progress is possible through the
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construction of a new magnetogeostrophic solution in § 6.1 to which internal viscous
boundary layers § 6.2 are matched. As Λ increases from O(E1/3), the most significant
feature is the collapse of the (E/Λ)1/2-Hartmann–Stewartson layer stump into the
E2/5-equatorial Ekman layer, which occurs when Λ = O(E1/5) (see § 6.2.2 and figure 4
below) marking the maximum of Z as given by (5.27) in the range E1/3 � Λ� E1/5.
When E1/5 � Λ� 1 the equatorial layer continues to thin and takes on the form of a
Hartmann layer which spreads in concert poleward about the inner sphere (see figure
5 below). Its strength is dependent on the boundary conditions and is particularly
weak for the stress-free boundary adopted by H94. This layer provides the sole
contribution to Z which now decreases with increasing Λ. The analytic solution (6.8),
(6.12) presented in § 6.2.1 shows that Z = O(1) when Λ = O(E3/25) (see (6.19)) and
thereafter is small.

We are also careful, where possible, with our order of magnitude error estimates.
They indicate that extreme values of the parameters are required to enter the asymp-
totic regimes. Nevertheless, even with the relatively moderate values employed for the
numerics, the results illustrated in figure 6 below support the trends predicted by the
asymptotics. We should stress that our emphasis on the value of Z is not because
of its physical context, which is obscure. Rather it is a diagnostic which provides
a succinct measure of viscous shear on the tangent cylinder. We use it to test the
applicability of our boundary layer theory to the results of numerical experiment.

2. Inviscid non-magnetic limit
When E = Λ = 0, we may write the solution in the form

u = uf(s, φ, z) +UG(s, φ), (2.1a)

where uf(s, φ, z) is a particular integral of

2ẑ×uf = −∇pf + f
(∇ · uf = 0

)
(2.1b)

and

UG(s, φ) =

(
1

s

∂ΦG

∂φ
,−∂ΦG

∂s
, WG

)
(2.1c)

is the appropriate additional geostrophic flow (pressure PG = −2ΦG) required to meet
the vanishing of the normal velocity on the inner and outer spherical boundaries.

For a specific model problem, we consider a single azimuthal harmonic and set

(u, p, f) = Re [(u†, p†, f†) eimφ]. (2.2)

In view of the linearity, this is the only harmonic involved. So henceforth we use this
complex notation and for clarity drop the superscript †. We generalize the m = 1
example of H94 to

uf =

(
− im

γ + 1

sm−1z2

rmi H
2
i

,
sm−1(γs2 + mz2)

(γ + 1)rmi H
2
i

,− imγ

γ + 1

smz

rmi H
2
i

)
, (2.3a)

pf =
2

γ + 1

smz2

rmi H
2
i

, f =

(
− 2γ

γ + 1

sm+1

rmi H
2
i

, 0,
4

γ + 1

smz

rmi H
2
i

)
, (2.3b)

where γ is an arbitrary constant. It is included to stress the wide range of applicability
of the model. Indeed, the special case γ = −2 is particularly pertinent, as it corresponds
to the body force on a particular density distribution in a radial gravitational field.
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Since the the radial component of the velocity (2.3a) is given by

r · uf = −im
smz2

rmi H
2
i

, (2.4a)

direct integration of (2.1b) yields

Af = 2G[ẑ×uf] = −2 r · uf
∣∣
r=(ri,Hi)

= 2im. (2.4b)

In view of the fact that r · uf does not vanish on either the inner or outer spheres
except on the equator z = 0, the geostrophic flow necessary to meet the boundary
condition (1.5e) is given by

ΦG =


−s

mzozi

rmi H
2
i

in IGp s < ri

smz2
o

rmi H
2
i

in IGe s > ri,

(2.5a)

WG =

 im
sm(zo + zi)

rmi H
2
i

in IGp s < ri

0 in IGe s > ri,
(2.5b)

where here and below the domain labelling is that introduced on figure 2.
As noted by Hollerbach & Proctor (1993) for their case m = γ = 1, there is a flow

discontinuity on the tangent cylinder s = ri. Its most important manifestation is the
discontinuity of the radial velocity imΦG/s. It implies the existence of an azimuthal
jet on the tangent cylinder in order to accommodate mass flux continuity. It must be
stressed that this feature is generic and will only be absent for very special choices
of the body force. When small viscous and Lorentz forces are introduced the flow
continues to be given by (2.1), (2.3) and (2.5) in the mainstream outside boundary
layers. Our objective is to investigate how the discontinuity exhibited by (2.5) is
resolved with the additional small forces.

3. Quasi-geostrophic flow regime
When the Ekman and Elsasser numbers are small, the corrections to the flow

u = uf + UG obtained above are small in the mainstream outside Ekman–Hartmann
boundary layers adjacent to the inner and outer spherical boundaries r = ri and ro
as well as the tangent-cylinder shear layer s = ri. To resolve the nature of the latter,
we are guided by the results of K-S, which suggest that the main adjustments in the
shear layer are quasi-geostrophic provided that

Λ� E1/3; (3.1)

we will focus attention on this limit throughout this section. We will also assume that
the shear layer width δslL

∗ (say) is small compared to the azimuthal length scale:

mδsl � 1. (3.2)

At this stage it is inappropriate to specify the value of δsl , which is a complicated
function of m, Λ and E and possibly multi-valued to accommodate multiple layers.

Restricting attention to the harmonic (2.2), we continue with the complex repre-
sentation and describe the flow outside any Ekman–Hartmann layers adjacent to the
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inner and outer spheres by

u = uf + ũ, p = pf + p̃. (3.3)

The additional terms ũ and p̃ are close to UG and PG in the mainstream outside
the tangent-cylinder shear layer but differ significantly from them in it. Nevertheless,
even in the shear layer, motion remains quasi-geostrophic and so it is helpful to take
z-averages 〈 · · · 〉 :=

1

H

∫ zT

zB

· · · dz (3.4)

of the governing equations. In so doing, we rely heavily on the existence of large radial
shears in the quasi-geostrophic flow and make approximations on the basis of the
short radial length scale limit (3.2). It means that, in solving the governing equation
(1.3) for ũ and p̃, we ignore the ageostrophic flow forced by the inhomogeneous viscous
(E∇2uf) and magnetic (fM[uf], see (1.3d)) terms, as well as curvature effects; both are
linked to variations on an O(1) radial length scale. We largely, but not always, ignore
the radial derivative of H and φ-derivatives of other quantities. These are sensitive
matters, which are crucial to our quasi-geostrophic approximations, which we apply
with care.

On the basis of the above approximations the radial (s) and azimuthal (φ) compo-
nents of the z-averaged equation (1.3a) are approximately

−2
〈
ũφ
〉

= −d
〈
p̃
〉

ds
, (3.5a)

2
〈
ũs
〉

= − im
〈
p̃
〉

s
− Λi〈ũφ〉+ E

d2
〈
ũφ
〉

ds2
, (3.5b)

where

Λi = Λ
〈
b

2

s

〉
s=ri
. (3.5c)

The essential idea is that the motion is almost geostrophic and so we have only
retained the largest of the other terms, which are yet small compared to the basic
geostrophic balance. The nature of the approximation is first clarified by considering
the axisymmetric m = 0 case investigated by K-S. They essentially derived (3.5b)
and followed Taylor’s (1963) recipe of considering mass flux in and out of cylinders
as a means of fixing the magnitude of the degenerate quasi-geostrophic flow

〈
ũφ
〉
.

That argument now has to be modified because of the φ-component of the pressure
gradient in (3.5b). Nevertheless, the spirit of Taylor’s argument persists provided m is
not too large, in the sense of (3.2).

The geometry has important implications for mass conservation (∇ · ũ = 0); it
implies that

∇ · (H〈ũ〉) = −ũT · nT + ũB · nB. (3.6)

So multiplying each component of (3.5a, b) by H and taking the divergence of H
〈
ũ
〉

yields

E
d3
〈
ũφ
〉

ds3
− Λid

〈
ũφ
〉

ds
− im

〈
p̃
〉

riHi

dH

ds
= − 2

Hi

[ũT · nT − ũB · nB] . (3.7)

Here we have again ignored curvature effects and variations in height H except where
it leads to the topographic term proportional to im

〈
p̃
〉
. This term was absent in the

axisymmetric analysis of K-S; here it is crucial and corresponds to the vortex line
stretching term usually associated with topographic Rossby waves.
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Like Taylor’s (1963) condition for axisymmetric flows and modified versions of it,
(3.7) is a consistency condition necessary for removing the geostrophic degeneracy
present in (3.5a), which is resolved by the terms of smaller order in (3.5b). So at
leading order the solution is〈

ũ
〉

= U + smaller terms,
〈
p̃
〉

= P + smaller terms, (3.8a)

where the dominant geostrophic contribution is

U (s, φ) :=

(
imΦ

s
,−∂Φ

∂s
, W

)
, P = −2Φ. (3.8b)

Thus Φ is determined at lower order by the consistency condition (3.7) (see (3.12)
below). Importantly, U merges with the geostrophic flow UG defined by (2.1c) and
(2.4) on leaving the shear layer:

Φ− ΦG → 0 and W −WG → 0 as |(s− ri)/δsl | → ∞. (3.9)

To complete the formulation of the shear layer problem, we need to apply the
normal fluid flux boundary condition at the edge of the Ekman layers adjacent to the
inner and outer spheres, namely

ũ · n = −uf · n+ Ekman flux contribution, (3.10a)

depending on whether the boundaries are rigid or stress free. From this the dominant
contribution to the right-hand side of (3.7) is

ufT · nT − ufB · nB = −im
smH

rmi H
2
i

(06 s6 ro). (3.10b)

Finally, the topographic term requires the asymptotic value

dH

ds
+
ri

Hi

∼

√

ri

−2x
for x < 0

0 for x > 0

(3.11a)

valid for small |x| = O(δsl), where we have introduced the local radial coordinate

x = s− ri. (3.11b)

Substitution of the above results into (3.7) leads to the equations

E
d4Φ

dx4
− E1/2 d

dx

(
σ

dΦ

dx

)
− Λi d2Φ

dx2

=


2im

H2
i

[(
Hi√−2rix

− 1

)
Φ+ 1

]
for x < 0

2im

H2
i

(−Φ+ 1) for x > 0,

(3.12a)

where for
(i) stress-free boundaries

σ = 0; (3.12b)
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(ii) rigid boundaries

σ − 1

Hi

(
ro

Hi

)1/2

=


1

Hi

( ri

−2x

)1/4

for x < 0

0 for x > 0,

(3.12c)

as shown, for example, by K-S equations (3.4b) and (3.9).
Equation (3.12a) must be solved subject to

Φ →
 −

√−2rix

Hi

as x/δsl ↓ −∞
1 as x/δsl ↑ ∞,

(3.13a)

while at the tangent cylinder we require

continuity of Φ,
dΦ

dx
,

d2Φ

dx2
,

d3Φ

dx3
− σ

E1/2

dΦ

dx
across x = 0. (3.13b)

Using the magnitude of the Lorentz force calculated, we see that

AM = H2
i Λi

d2Φ

dx2

∣∣∣∣
x=0

, (3.14a)

which together with (2.3d) gives

Z =

∣∣∣∣1− i δ2
Λe

d2Φ

dx2

∣∣∣∣
x=0

(
δΛe :=

√
H2
i Λi

2m

)
. (3.14b)

In the next section we solve the boundary layer equations (3.12a) and calculate Z.

4. Shear layer structure
We need to solve (3.12) for positive and negative x separately and then apply

continuity conditions across x = 0. The asymptotics involves two pairs of parameters
∆E , εE and ∆Λ, εΛ generated from the two independent small numbers E and Λ. We
introduce them in the text, when required. Nevertheless, some error estimates involve
them prior to their introduction and so we find it convenient to list them together with
all the key lengths in Appendix A. In order not to proliferate more than necessary
the number of parameter ranges, we assume that

m = O(1). (4.1)

4.1. Exterior layers

The solution of (3.12) on the equatorial side x > 0 of the tangent cylinder, which
satisfies Φ→ 0 as x ↑ ∞, is

Φ = 1− λ+(1 + α−)e−λ−x − λ−(1 + α+)e−λ+x

λ+ − λ− . (4.2a)

Here the constants α± are fixed by the x = 0 values of Φ and its derivative:

α± =

[
− 1

λ∓
dΦ

dx
− Φ

]
x=0

. (4.2b)
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The values of λ− (π/46 arg λ−6 3π/8) and λ+ (−π/86 arg λ+6 0) are given by

λ2
± :=

1

2

(
1

δ2
H

+
σo

δ2
Ee

)
±
[

1

4

(
1

δ2
H

+
σo

δ2
Ee

)2

− i

δ4
Ee

]1/2

(4.3a)

(see (4.4)), where significantly the product

λ+λ− =
eiπ/4

δ2
Ee

(4.3b)

is independent of both Λ and

σo =


0 stress-free(

ro

2mHi

)1/2

rigid.
(4.4a)

The viscous and magnetic length scales relevant to the form of λ± are

δEe :=

(
EHi

m

)1/4(
Hi

2

)1/4

, δΛe :=

(
ΛiHi

m

)1/2(
Hi

2

)1/2

, (4.4b)

which together define the Hartmann length

δH :=

(
E

Λi

)1/2

with δΛeδH = δ2
Ee. (4.4c)

We can identify two asymptotic regimes. In one case, the boundary layer Se has a
single viscous length scale δEe:

λ± = O

(
1

δEe

)
for Λ 6O

(
(mE)1/2

)
. (4.5)

In the other, it has a double layer structure:

λ− ≈ eiπ/4

δΛe
, λ+ ≈ 1

δH
for Λ � (mE)1/2. (4.6a)

Here λ+ identifies the thin Hartmann layer He of width O(δH ), while λ− corresponds
to a thicker magnetotopographic layer MTe of thickness O(δΛe):

δH � δEe � δΛe for Λ � (mE)1/2. (4.6b)

From a general point of view the longest boundary length on the equatorial side
always exceeds that on the polar side (x < 0). As a consequence, the main role of the
exterior layer is to bring Φ close to zero on the tangent cylinder x = 0. This reduces
as much as possible the singularity of Φ/

√−x in (3.12a) as x ↑ 0. Furthermore, in the
viscous regime on the equatorial side (Λ � E3/7, identified in § 4.2.1 below), we find
that the derivative dΦ/dx also vanishes at the origin at lowest order. More precisely,
the result (4.15) below shows that both α+ and α− are small, which in turn establishes
with use of (4.2) the smallness of Φ and dΦ/dx at x = 0. Within the framework of
the approximation (α± ≈ 0), (4.2a) gives

d2Φ

dx2

∣∣∣∣
x=0

≈ eiπ/4

δ2
Ee

=
eiπ/4

δΛeδH
for Λ� m4/7E3/7, (4.7)

independent of both Λ and σo because of the property (4.3b). The lack of dependence
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on σ is particularly interesting because it indicates that the result is independent of
whether the boundary is rigid or stress-free. Since this second derivative is continuous
across x = 0, we conclude that (3.14b) yields

Z =

∣∣∣∣1 + e−iπ/4 δΛe

δH
(1 + O(Υ ))

∣∣∣∣ for Λ� m4/7E3/7, (4.8a)

where the error estimate O(Υ ) (see (4.13a) below) is established by (4.18) below. At
fixed E, (4.8a) indicates that Z is an increasing function of Λ:

Z =


O(1) for Λ6O

(
(mE)1/2

)
O

(
Λ

(mE)1/2

)
for (mE)1/2 � Λ� m4/7E3/7.

(4.8b)

4.2. Interior layers

The boundary conditions on the solution of (3.12a) in the interior layer on the polar
side x < 0 of the tangent cylinder are determined by the continuity conditions (3.13b)
and the exterior solution (4.2a). They give

d2Φ

dx2
+ (λ+ + λ−)

dΦ

dx
+ λ+λ−(Φ− 1) = 0, (4.9a)[

d3Φ

dx3
− σ

E1/2

dΦ

dx

]
x↑0

+ (λ+ + λ−)
d2Φ

dx2
+

([
σ

E1/2

]
x↓0

+ λ+λ−
)

dΦ

dx
= 0 (4.9b)

at x = 0. The nature of the solution depends on the relative sizes of Λ and E. The
key viscous and magnetic lengths are

δEp :=

(
EHi

m

)2/7 (ri
2

)1/7

, δΛp :=

(
ΛiHi

m

)2/3 (ri
2

)1/3

; (4.10a)

they are linked to the Hartmann length δH by

δ3
Λpδ

4
H = δ7

Ep. (4.10b)

There are two main parameter ranges identified by the magnitude of the ratio

∆E :=
δEp

δH
=

(
Λi

E3/7

)1/2(
riH

2
i

2m2

)1/7

, (4.11)

which we investigate separately.

4.2.1. Viscous regime (εΛ � ε2E)

In the small-∆E parameter range

Λ� m4/7E3/7 (∆E � 1) (4.12)

(equivalently εΛ � ε2E; see (A 2b)), the Lorentz force is unimportant and the resulting
viscous layer Sp has the single length scale δEp. Of importance in the application of
the boundary conditions (4.9) at the tangent cylinder x = 0 is its ratio to the shortest
length scale |λ−1

+ | in the exterior layer:

Υ := |λ+δEp| =
{
O(εE) for Λ6O

(
(mE)1/2

)
O(∆E) for (mE)1/2 � Λ� m4/7E3/7,

(4.13a)
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where

εE :=
δEp

δEe
=

(
EHi

m

)1/28 (ri
2

)1/7
(

2

Hi

)1/4

(� 1). (4.13b)

Since the interior viscous length scale δEp is shorter than any of the length scales
of the exterior boundary layer, most of the required adjustment of Φ occurs in the
exterior layer, while the main adjustments to the higher derivatives, which dominate
(4.9), occur in the interior layer. The crucial balance on the tangent cylinder in (4.9a)
is dominated by d2Φ/dx2 ≈ λ+λ−, consistent with (4.7) above. In turn, it sets the scale
for the small interior solution:

Φ = ε2EΦp(ξ) with ξ = x/δEp. (4.14)

Together with (4.2b) and (4.3b) we obtain the explicit expressions

α± = −e−iπ/4 λ±δEp
dΦp
dξ

(0)− ε2EΦp(0) = O(Υ ) (4.15)

for the coefficients of the exterior solution (4.2a). Here the error estimate comes from
the size of the coefficient of the first derivative. The necessary smallness of α± confirms
our limitation to the range (4.12).

As pointed out in § 4.1, the lowest-order result (4.15) is sufficient to establish (4.7)
and the value (4.8) of the measure Z. Nevertheless for completeness, we outline the
problem for Φp and indicate how the expansion can proceed consistently. According
to (3.12a), Φp satisfies

d4Φp

dξ4
− d

dξ

[(
σi

(−ξ)1/4
+ ∆2

E

)
dΦp
dξ

]
− i

(
1√−ξ − ε

4
E

)
Φp = iε2E, (4.16a)

where

σi =


0 stress-free(

ri

2mHi

)1/2

rigid.
(4.16b)

Throughout the small-∆E range (4.12), the boundary conditions (4.9) reduce to

d2Φp

dξ2
=

1 + i√
2

+ O(Υ ),
d3Φp

dξ3
− σi dΦp

dξ
= O(Υ ) at ξ = 0,

Φp → 0 as ξ →∞.

 (4.17)

The lowest-order problem involves solving (4.16a) with the terms proportional to
∆2
E and ε2E neglected subject to the boundary conditions (4.17). The way that we

approximate the boundary conditions again emphasizes the limitation of the validity
of our solution to small Υ .

Finally, we note that, with the solution of (4.16) and (4.17), we may obtain the
exact representation

d2Φ

dx2

∣∣∣∣
x=0

=
1

δ2
Ee

[
eiπ/4 (1− ε2EΦp(0))− δEp (λ+ + λ−)

dΦp
dξ

(0)

]
, (4.18)

in which the coefficient of the first derivative dΦp/dξ(0) is O(Υ ). In this way the
solution of (4.16) and (4.17) determines the O(Υ ) corrections to (4.7). Accordingly,
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(4.8a) yields

Z =


[
1 +
√

2
δΛe

δH
+

(
δΛe

δH

)2 ]1/2

+ O(εE) for Λ6O((mE)1/2)

δΛe

δH
(1 + O(∆E)) for (mE)1/2 � Λ� m4/7E3/7.

(4.19)

When ∆E = O(1), the scaling (4.14) of Φ remains valid, but we must now solve
(4.16) subject to (4.9) without its simplification to (4.17). Its solution is essential,
however, to determine dΦp/dξ(0), which makes a leading-order contribution to the
exact expression (4.18). This in turn is required to calculate the measure Z as defined
by (3.14b).

4.2.2. Magnetic regime (εΛ � ε2E)

In the large-∆E parameter range

m4/7E3/7 � Λ� E1/3 (∆E � 1) (4.20a)

(equivalently εΛ � ε2E; see (A 2b)), the interior layer has a double structure. There is
an outer magnetotopographic layer MTp on the length δΛp and an inner Hartmann
layer Hp on the length δH . Their inverse ratio is

∆Λ :=
δH

δΛp
= ∆

−7/3
E � 1. (4.20b)

Remember that throughout the parameter range (4.20a) the exterior layer is also
divided into two such layers of width δΛe and δH respectively.

(a) Outer magnetotopographic layer
On the relatively long magnetotopographic MT (compared to the short viscous H)

length scales δΛp(� δEp) and δΛe(� δEe), viscous effects are negligible throughout the
tangent-cylinder shear layer. This approximation reduces the order of the governing
differential equations. So at lowest order we only require continuity of Φ and dΦ/dx
for the distinct solutions either side of the tangent cylinder across x = 0. Since the
interior length δΛp is shorter than the exterior length δΛe, most of the Φ adjustment is
made on the exterior equatorial side so that its value on the tangent cylinder is almost
zero. In consequence, continuity of the first derivative dΦ/dx fixes the Φ amplitude
to be of order of the length scale ratio

εΛ :=
δΛp

δΛe
=

(
ΛiHi

m

)1/6(
ri

2

)1/3(
2

Hi

)1/2

(� 1). (4.21)

Accordingly we write

Φ ≈
{

1 − (1− εΛΦM(0)) exp (−λ−x) for x� δH

εΛΦM(x/δΛp) for − x� δH.
(4.22)

Here we have introduced

ΦM = ΦM(η) with η = x/δΛp; (4.23a)

with this change of variables (3.12a) becomes

∆2
Λ

d4ΦM

dη4
− d

dη

[(
∆Λ

σi

(−η)1/4
+ 1

)
dΦM
dη

]
− i

(
1√−η − ε

2
Λ

)
ΦM = iεΛ. (4.23b)
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The problem is complicated by the presence of two independent small parameters
∆Λ and εΛ, whose relative sizes change over the range (4.20a). Nevertheless, the biggest

correction to the lowest-order solution that we present is O(∆
1/2
Λ ) and triggered by the

Hartmann layer. It remains larger than the O(εΛ) corrections throughout the range

(4.20a) but they are both comparable at the end of the range, where εΛ = O(∆
1/2
Λ ) at

Λ = O(E1/3). Neglecting O(∆Λ) terms, (4.23b) reduces to

d2ΦM

dη2
+ i

ΦM√−η = −iεΛ, (4.24a)

correct to O(εΛ). Ignoring, for the moment, any Hartmann boundary layer corrections,
continuity of the derivative of (4.22) across x = 0 gives

dΦM
dη

(0) = eiπ/4(1− εΛΦM(0)), (4.24b)

while boundedness at infinity requires that

ΦM + εΛ
√−η → 0 as η ↓ −∞. (4.24c)

The zeroth-order solution of (4.24a) bounded at infinity is

ΦM = −K exp

(
− i5π

12

)
Ai′(τ)
Ai′(0)

,
dΦM
dη

= −K21/3 exp

(
iπ

4

)
Ai(τ)

Ai′(0)
, (4.25a)

where Ai(τ) is the Airy function, the prime denotes derivative,

τ := 22/3 exp

(−iπ

6

)√−η (4.25b)

and K = K0 defined by (B 3b) is fixed by the boundary condition (4.24b). The
next-order solution, which includes the O(εΛ) corrections, is outlined in Appendix B.

In order to set up boundary conditions on the thinner Hartmann layer that occurs
when η = O(∆Λ), we need the small-|η| expansion of (4.25a), namely

ΦM ∼ ΦM(0)[1− i 4
3

(−η)3/2] +
dΦM
dη

(0) η[1− i 4
15

(−η)3/2] as η ↑ 0. (4.26)

From a more general point of view, this expansion of the magnetotopographic
solution just inside the tangent cylinder shows that the vorticity −d2Φ/dx2 diverges
like (−x)−1/2 as x ↑ 0. As a consequence, we are unable to evaluate Z defined
by (3.14b) from this inviscid solution. The singular behaviour is very similar to
that encountered in the magnetic Proudman layers of K-S. In both cases, the effect is
caused by relatively strong axial motion linked to the topography. In the axisymmetric
case of K-S, it comes about via Ekman suction through the equatorial singularity of
the Ekman layer. In our inviscid approximation, Ekman suction has been ignored
and the crucial interaction comes from the non-axisymmetric flow over axisymmetric
topography – the inner sphere boundary.

(b) Inner Hartmann layer
The singularity of the outer solution constructed above is removed in an inner

Hartmann layer H. In it, though the Ekman suction term remains formally small
in the case of rigid boundaries, there is a weak singularity associated with it which
adds to the complexity of our problem. Hence to simplify our presentation we restrict
attention to the stress-free case

σ = 0. (4.27)
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Accordingly we consider the stretched vorticity

ΩH (ζ) := −ε−1
Λ ∆

−3/2
Λ δ2

H

d2Φ

dx2
with ζ =

x

δH
(4.28)

triggered by the singular vorticity of the outer solution. Correct to leading order it
satisfies

d2ΩH

dζ2
− ΩH = −i

ΦM(0)√−ζ . (4.29a)

Continuity of the second and third derivatives of Φ at x = 0 with the exterior
Hartmann layer is guaranteed by (4.9b). Specifically, at lowest order, we approximate
λ+ = 1/δH , λ− = 0 (σ = 0) and accordingly (4.9b) implies that ΩH satisfies the
boundary conditions

dΩH
dζ

+ ΩH = 0 at ζ = 0,

ΩH → 0 as ζ ↓ −∞.

 (4.29b)

The solution of the problem (4.29) is

ΩH = iΦM(0)

[
e−ζ
∫ ∞
√−ζ

e−ρ
2

dρ+ eζ
∫ √−ζ

0

eρ
2

dρ

]
. (4.30a)

It determines

ΩH (0) = i

√
π

2
ΦM(0) (4.30b)

and successively (3.14a) gives

AM = −2m
δΛe

δH
∆

1/2
Λ ΩH (0) = −im

√
π
δΛe

δH
∆

1/2
Λ ΦH (0). (4.31a)

In this way, (1.9) reduces with (2.3d), (4.25a) and (B 3b) to

Z =

∣∣∣∣1 + e−i5π/12 61/3

4
Γ

(
5

6

)
δΛe

δH
∆

1/2
Λ

(
1 + O(∆

1/2
Λ ) + O(εΛ)

)∣∣∣∣. (4.31b)

Note also that integration of (4.29a), making use of (4.29b), gives

ε−1
Λ ∆

−3/2
Λ δH

(
dΦ

dx

∣∣∣∣
x=0

− dΦ

dx

)
= ΩH (0)− 2iΦM(0)

√−ζ +
dΩH
dζ

. (4.32)

It can be used to quantify the correction to the boundary condition (4.24b) on
dΦM/dη. First we identify the dominant term at large ζ proportional to

√−ζ with the
lowest-order Airy function terms in the solution (4.25a) as exhibited by the derivative
of (4.26). Then on expressing it in terms of inner variables as (δΛp/δH )1/2√−η, we

see that the correction term ΩH (0) is smaller by a small factor O(∆
1/2
Λ ); this is

the magnitude of the correction to the boundary condition (4.24b) triggered by the
Hartmann layer and is incorporated in (4.35) below. This confirms the consistency of
our approximation procedure.

(c) Composite solution
The magnetotopographic and Hartmann layer results can be combined to give the

composite solution

Φ ≈
{
εΛ[ΦM(x/δΛp)− ∆

3/2
Λ ΩH (x/δH )] for x < 0

1 − [(1− εΛΦM(0)) e−λ−x + εΛ∆
3/2
Λ ΩH (0)e−λ+x] for x > 0.

(4.33)
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The combination of terms for x < 0 cancels out the algebraic singularities proportional
to (−x)3/2 present in both ΦM and ΩH so giving a uniformly valid lowest-order
approximation. From it we may also deduce that the parameters α± in (4.2a) are
given correct to lowest order by

α− ∼ −εΛΦM(0), 1 + α+ ∼ −∆
1/2
Λ

√
π

2
eiπ/4ΦM(0). (4.34)

Of greater significance is the correction to the value of ΦM(0). In particular, the
continuity of the derivative of (4.14) at x = 0 yields, using (4.29b),

dΦM
dη

(0) + ∆
1/2
Λ ΩH (0) = eiπ/4 (1− εΛΦM(0)) . (4.35)

Together with (4.30b) we obtain the improved approximation

K =K0

/[
1− ∆

1/2
Λ

√
π

2
K0 exp

(
− iπ

6

)]
+ O(εΛ) (4.36)

for the amplitude if the Airy function solution (4.25a).
Of course, a yet higher-order algebraic singularity remains on the tangent cylinder.

It is nevertheless weak and manifested by the divergence of the fourth derivative of
Φ. That is removed in an ageostrophic E1/3-Stewartson layer, as discussed by K-S.

In sumary, the results of this subsection show that

Z =

∣∣∣∣1− √π2 δΛe

δH
∆

1/2
Λ ΦM(0)

∣∣∣∣ = O

(
Λ5/12

m1/6E1/4

)
for m4/7E3/7 � Λ� E1/3. (4.37)

Here the zeroth-order approximation coincides with (4.31b); the Hartmann layer

O(∆
1/2
Λ ) correction to ΦM(0) is embodied by (4.25a) and (4.36), while additional

smaller O(εΛ) contribution to the solution is outlined in Appendix B and leads to the
improved expression (B 4) for ΦM(0). The reason for determining these corrections
so carefully is two-fold. On the one hand, we wish to establish the consistency of
the asymptotic expansions. On the other, we require reliable estimates of the errors
when making comparison with the numerical results in § 6. Furthermore, the main
conclusion of the quasi-geostrophic approximation employed throughout this section,
as it applies to Λ � E1/3, is that the parameter Z is an increasing function of Λ.
When we leave this parameter range, the trend continues but is eventually reversed,
as we discuss in the following section.

5. Ageostrophic regime
5.1. Intermediate regime

As K-S show – but see also Hollerbach (1996b) – the parameter range

Λ = O(E1/3) (5.1)

marks an important transition of flow characteristics which is clearly illustrated by the
summary figure 2. As Λ increases to O(E1/3), the quasi-geostrophic Hartmann layer
width δH shrinks to the width O(E1/3) of the thinner ageostrophic viscous Stewartson
sublayer. As Λ increases beyond O(E1/3), a z-dependent magnetogeostrophic layer MG
emerges on a broader O(Λ) length scale but still small compared to the z-independent
magnetotopographic layers MT width δΛe and δΛp. They eventually merge, filling the
shell when Λ is O(1). Simultaneously, the Hartmann–Stewartson layer HS contracts
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axially to a small stump on the tangent cylinder attached to the equator of the
inner sphere. The magnetogeostrophic layer does not completely remove the tangent-
cylinder discontinuity. So to determine Z, the Hartmann–Stewartson layer structure
needs to be considered.

In order to allow for z-dependence in the flow we write

ũ ≈
(

imϕ̃

s
− ∂ψ̃

∂z
, −∂ϕ̃

∂s
,
∂ψ̃

∂s

)
. (5.2)

This representation is approximate in so much as we have neglected azimuthal
derivatives of ψ̃ in comparison with radial derivatives and so the size of m is again
limited by (3.2).

A match with the largely z-independent magnetotopographic solution (4.22) is
obtained with

ϕ̃ = εΛΦM(0) + eiπ/4 x

δΛe
− i

x2 − y2

2δ2
Λe

+ im

(
2

ri

)1/2

εΛΦM(0) ϕ(x, z) , (5.3a)

ψ̃ = −eiπ/4 y

δΛe
+ i

xy

δ2
Λe

+ im

(
2

ri

)1/2

εΛΦM(0) ψ(x, z) (5.3b)

by the first two linear terms in ϕ̃. In (5.3a, b), we have introduced

y(z) :=
Λ

2

∫ z

0

b
2

s

∣∣∣
s=ri

dz so that y(Hi) =
ΛiHi

2
, (5.3c)

while the functions ϕ and ψ satisfy

2
∂ψ

∂z
=

(
−Λb2

s + E
∂2

∂x2

)
∂ϕ

∂x
, (5.4a)

−2
∂ϕ

∂z
=

(
−Λb2

s + E
∂2

∂x2

)
∂ψ

∂x
, (5.4b)

which are equivalent to K-S equation (4.3) under appropriate rescalings. In the
construction of (5.3), we have arranged the linear and quadratic terms so that they
satisfy (5.4) as well as the vanishing of the normal velocity on the outer sphere
boundary r = ro, namely (Hi∂ψ̃/∂s ≈) r · uf ≈ im for |x| � 1. Note also that the
y-independent algebraic terms up to O((x/δΛe)

2) in the expression for ϕ̃ agree with
the expansion of (4.22) for δΛe � x > 0 in the region exterior to the tangent cylinder.
In this way, the only non-trivial boundary condition to be met at leading order by
our solution of (5.4) stems from the vanishing of the normal velocity on the inner
sphere boundary r = ri, namely

imϕ̃+ zi(s)
d

ds
ψ̃(s, zi(s)) = r · uf ≈ 0

for 0 < −x � 1, where as usual zi(s) =
√−2rix and x = s − ri. Correct to lowest

order integration gives

ψ(s, zi(s)) = (−x)1/2.

To the same order of accuracy, we summarize the boundary conditions as follows:

ψ =


0 on z = Hi

(−x)1/2 on z =
√−2rix for x < 0

0 on z = 0 for x > 0.
(5.5)
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The pivotal approximation of this section is to assume that the z-length scale is
large compared to the inner-sphere boundary height zi =

√−2rix. On this basis, we
apply the inner-sphere boundary condition on z = 0; we comment on the range
of validity of this approximation at the end of § 5.2.2 and quantify it by (5.26).
Accordingly the formal solution of (5.4) subject to (5.5) is

ψ(x, z) =

∫
C∞
ψ̂0(k)

sinh (kχ̂(k, z))

sinh (kχ̂0(k))
eikx dk, (5.6a)

ϕ(x, z) = −i

∫
C∞
ψ̂0(k)

cosh (kχ̂(k, z))

sinh (kχ̂0(k))
eikx dk + ϕ0, (5.6b)

similar to K-S equation (4.5a, b), where

χ̂(k, z) := χ̂0(k) −
(
y +

E

2
k2z

)
, (5.6c)

χ̂0(k) = χ̂(k, 0) :=
Hi

2

(
Λi + Ek2

)
(5.6d)

and the small constant ϕ0 = O((ΛiHi)
1/2) (see (5.14b) below) is chosen such that

ϕ(0, 0) = 0. Here

ψ̂0(k) :=
1

4
√
π (−ik)3/2

(5.6e)

is analytic in the upper half-plane with the complex plane cut along the negative
imaginary axis ((−ik)3/2 = e−(3/4)πik3/2 for positive real k), while the path of integration
also circumvents the origin in the upper half-plane: C∞ := {x+ iz | −∞ < x < ∞, z ↓
0}. Note that (5.6e) differs from K-S equation (4.5c) because the algebraic power in
our boundary condition (5.5) is (−x)1/2 in contrast to (−x)−1/4 in K-S equation (4.4).

The most informative feature of this solution is the z = 0 value

ϕ(x, 0) = −i

∫
C∞
ψ̂0(k) coth (kχ̂0(k)) eikx dk + ϕ0. (5.7a)

From it, we may deduce the asymptotic results

ϕ(x, 0) ∼


− 4

3ΛiHi

(−x)3/2 as x ↓ −∞
0 as x ↑ 0

−x1/2 as x ↓ 0

ϕ0 = O((ΛiHi)
1/2) as x ↑ ∞,

(5.7b)

cf. K-S equation (4.6b). The asymptotic behaviour for |x| � ΛiHi is quasi-geostrophic
and matches with the z-independent magnetotopographic solution (4.22). In making
this claim, we assume – and establish in (5.14b) below – that ϕ0 is negligible in the
exterior overlap region ΛiHi � x � δΛe, while the match in the interior overlap
region ΛiHi � −x� δΛp is evident from the expansion (4.26).

The asymptotic behaviour for |x| � ΛiHi is best determined from the asympotic
representation (5.18) below in the limit z ↓ 0. The validity of applying the inner-sphere
boundary conditions on z = 0, as we have done, ceases to be valid for the quadrupole
model of H94 once Λ>O(E1/5). The necessary refinements appropriate to that case
are undertaken in § 6. For the moment, we note that the −x1/2 behaviour of ϕ(x, 0)
as x ↓ 0 is indicative of singularities linked to the equator of the inner sphere. These
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are eventually removed in viscous sublayers. A convenient way of quantifying the
magnitude of the singularity inside and outside those viscous sublayers is to measure
the contribution to AM from some height z to the top boundary. From (5.3a) we
obtain

AM(z) := HiΛ

∫ Hi

z

[
b

2

s

∂2ϕ̃

∂s2

]
s=ri

dz

= 2im

[(
−1 +

2y

ΛiHi

)
+ Hi

(
2

ri

)1/2

εΛΦM(0)G(y)

]
, (5.8a)

G(y) :=

∫ ΛiHi/2

y

∂2ϕ

∂x2

∣∣∣∣
x=0

dy. (5.8b)

The value of AM ≡ AM(0) determines

Z :=

∣∣∣∣∣Hi

(
2

ri

)1/2

εΛΦM(0)G(0)

∣∣∣∣∣, (5.8c)

which itself depends on

G(0) = i

∫
C∞
k2ψ̂0(k)

[∫ ΛiHi/2

0

cosh (kχ̂(k, z))

sinh (kχ̂0(k))
dy

]
dk. (5.9)

In the case of the z-independent radial magnetic field of H94, we can proceed to
evaluate G(0) analytically with

2y = Λiz for model H94. (5.10)

It gives

G(0) = − Λi

4
√
π

∫
C∞

dk

(−ik)1/2
(
Λi + Ek2

) = −
√
π

4 δ
1/2
H

for model H94, (5.11)

where the value of the integral stems from the residue at the pole in the upper half-
plane. Together with (5.8c), we recover our earlier results (4.31). The simplicity of this
conclusion can be explained by taking the z-average of (5.4a); that recovers (3.12a)
for two reasons. First, bs is constant and secondly, we have made the approximation
zB = 0, zT = Hi which implies that we can commute the averaging with the x-partial
derivatives.

The main small correction to the result (5.11) stems from applying the inner-
sphere boundary condition correctly at zi =

√−2rix rather than at zi = 0. In the
range E1/3 � Λ � E1/5, where the result (5.11) is valid, even the magnitude of the
correction is difficult to quantify and has not been attempted.

In the case of the dipole model of K-S, we must postpone the evaluation of G(0)
(see (5.23) below) until our detailed analysis of the Hartmann–Stewartson layer in
§ 5.2.2.

5.2. Magnetogeostrophic flow and viscous sublayer

For

E1/3 � Λ � 1, (5.12)

we can distinguish two regions, a magnetogeostrophic layer MG and an internal
viscous boundary layer HS attached to the equator of the inner sphere.
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5.2.1. Magnetogeostrophic layer

On scales sufficiently large that viscous forces can be neglected, the solution of (5.4)
subject to (5.5) can be expressed in the complex form

ψ + i (ϕ− ϕ0) =
1

4
√
π

∫
C∞

exp
(

1
2
ΛiHi + iZ

)
k

(−ik)3/2 sinh
(

1
2
ΛiHi k

) dk, (5.13a)

= − i

ΛiHi

∫ 0

−∞

(−X)1/2 exp
[−π(Z −X)/ΛiHi

]
sinh

[
π(Z −X)/ΛiHi

] dX, (5.13b)

where Z is an analytic function of the complex variable

Z := x+ i y = O(Λ). (5.13c)

The former is simply the Fourier transform solution (5.6) with E = 0. The latter
alternative form is the Green’s function solution, in which the complex Z-plane is cut
along the negative real axis of integration. In the right-hand half-plane, the former
gives

ψ + i (ϕ− ϕ0) =
i

23/2π
(ΛiHi)

1/2

∞∑
n=1

1

n3/2
exp

(
−n 2πZ

ΛiHi

)
for ReZ > 0. (5.14a)

So to ensure that ϕ(0, 0) = 0 we set

ϕ0 = −ζ(3/2)

23/2π
(ΛiHi)

1/2 with ζ(3/2) ≡
∞∑
n=1

1

n3/2
, (5.14b)

the Riemann zeta function. In the neighbourhood of the origin the series (5.14a) can
be summed to give the asymptotic expression

ψ + iϕ ∼ −iZ1/2 for |Z | � ΛiHi, (5.15)

which by analytic continuation is valid for −π < argZ < π. It recovers the x → 0
limits in (5.7b). The large negative-x behaviour is perhaps best deduced from the
Green’s function representation (5.13b):

ψ ∼ (−x)1/2

(
1− 2y

ΛiHi

)
ϕ ∼ − 4

3ΛiHi

(−x)3/2

 for 0 < y < ΛiHi/2, −x� Λ. (5.16)

Here ψ meets the boundary conditions (5.5) on both z = 0 and Hi, while ϕ agrees
with the previous result (5.7b) on z = 0 as x ↓ −∞.

Since our solution (5.13) of (5.4) with E = 0 is potential it is relatively easy to
calculate the integral (5.8b). It is

G(y) = −
[
∂ϕ

∂y

]ΛiHi/2

y

= −∂ψ
∂x

(0, Hi) +
∂ϕ

∂y

∣∣∣∣
x=0

. (5.17a)

The first term is small and can be neglected. So close to the inner sphere, use of (5.15)
gives

G(y) = − 1

2
√

2
y−1/2 for 0 < y � ΛiHi. (5.17b)

Since this diverges in the limit y ↓ 0, the reduction to finite values of G(0) (and
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consequently AM) is accomplished in viscous sublayers attached to the equator of
the inner sphere. The failure of the magnetogeostrophic solution to provide a finite
value of AM has its counterpart in the z-independent case of § 4.2.2(a).

5.2.2. Hartmann–Stewartson layer

On the short length scales, where viscous forces are important, the solution (5.6)
reduces at leading order to

ψ =

∫ ∞
−∞
ψ̂0(k) eΞ dk, ϕ = −i

∫ ∞
−∞
|k|
k
ψ̂0(k) eΞ dk, (5.18a)

where

Ξ := ikx− |k|y − 1
2
E|k|3z. (5.18b)

In evaluating (5.18a), we regard |k| as an analytic function except for cuts along both
imaginary axes excluding the origin k = 0 of the complex k-plane, through which the
contour of integration passes. From this representation we can determine the small-|x|
asymptotic behaviour in (5.7b). That form itself is interesting as it essentially removes
the singular behaviour of ∂ψ̃/∂s inside the tangent cylinder leaving the stronger part
outside.

The size of the (viscous) Hartmann–Stewartson layer stumps, described by (5.18a),
may be estimated on the basis that the three terms on the right-hand side of (5.18b),
which contribute to Ξ , are comparable. It gives

x ∼ y ∼ (Ez)1/3. (5.19)

Let us define the height δHS of the stump to be that value of z at which the inviscid
value, namely AM(δHS ) (5.8a) with (5.17b), agrees with the viscous value AM . For
the uniform radial field case with G(0) given by (5.11), we obtain

δHS =
2

π

δH

Λi
=

2

π

(
E

Λ3
i

)1/2

for model H94, (5.20)

consistent with the length scale estimate ΛiδHS = O((EδHS )1/3) required by (5.19).
In the case of the dipole model of K-S, it is first necessary to determine AM on

the basis that its dominant contribution comes from the viscous stump. So under the
approximations made in (5.18), the formula (5.9) reduces to

G(0) = − 1

4
√
π

∫ ∞
−∞

|k|
(−ik)1/2

[∫ ∞
0

exp
(−|k|y − 1

2
E|k|3z) dy

]
dk, (5.21a)

in which correct to lowest order we have

y ≈ Λei

6r2
i

z3 with Λei := Λr2
i

(
∂bs

∂z

)2

(ri, 0) (5.21b)

(cf. K-S equation (4.13), remembering that there b is a potential field). With the
change of variables

z =

(
Λei

6r2
i

)−3/8(
2

E

)−1/8

$, k =

(
Λei

6r2
i

)1/8(
2

E

)3/8

$K, (5.22a)

the double integral (5.21a) becomes

G(0) ∼ − 3

4
√
π

(
4Λei

3r2
i E

3

)1/16 ∫ ∞
−∞

∫ ∞
0

|K| exp [−(|K|+ |K|3)$4]

(−iK)1/2
$7/2 d$ dK, (5.22b)
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where |K| and (−iK)1/2 as functions of K have the same properties in the complex
plane as k. Successive integrations with respect to $ and K respectively yield

G(0) ∼ − 3

8
√

2π
Γ

(
9

8

)(
4Λei

3r2
i E

3

)1/16 ∫ ∞
0

K−5/8(
1 +K2

)9/8
dK,

= − 3

16
√

2π
Γ

(
3

16

)
Γ

(
15

16

)(
4Λei

3r2
i E

3

)1/16

for model K-S. (5.23)

It determines the boundary layer height

δHS =

(
8
√
π

3Γ (3/16)Γ (15/16)

)2/3(
6r2
i

Λei

)3/8(
E

2

)1/8

for model K-S. (5.24)

In summary the boundary layer height for both the quadrupole and dipole models
is consistently a function of Λ/E1/3:

δHS =


O

([
Λ

E1/3

]−3/2
)

for model H94

O

([
Λ

E1/3

]−3/8
)

for model K-S.

(5.25)

The latter is, of course, consistent with (5.19) and recovers the stump dimensions
given by K-S equation (4.15).

Finally, we check the consistency of the assumption that the sphere boundary
height

√−2rix, with x = O((EδHS )1/3), is small compared to the stump boundary
layer height δHS . This scale separation is required to justify the assumption that the
sphere boundary condition can be applied on z = 0 and is satisfied only when

r3
i E � δ5

HS . (5.26)

For model H94 it is only met when Λ� E1/5, as shown schematically on figure 2. In
contrast, for model K-S it is met throughout the range Λ � 1, as assumed by K-S,
and figure 2 must be modified accordingly.

Our results for G(0) provide us with the following estimates of the size of Z given
by (5.8c):

(i) For the uniform field model, our result (5.11) shows that (4.37) continues to
hold and so subject to the requirement (5.26), we have

Z = O

(
Λ5/12

m1/6E1/4

)
throughout E1/3 � Λ� E1/5 for model H94. (5.27)

We consider the appropriate modifications necessary for larger values of Λ (>O(E1/5))
in the following section.

(ii) For the dipole model, the result (5.23) determines

Z = O

(
Λ11/48

m1/6E3/16

)
throughout E1/3 � Λ� 1 for model K-S. (5.28)

The actual asymptotic value is determined from (5.8c), (5.21b) and (5.23).
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K3/2

y /Kei

–K
x x

–K

K1/2

y /Ki

(a) (b)

– dK3

K

Figure 3. The location of the inner-sphere boundary in the stretched x, y-space. (a) For the dipole
magnetic field K-S the boundary is cusped; y2

i = −2Λ2
eix

3/9ri. (b) For the quadrupole magnetic field
H94 the boundary is elliptical; y2

i = −Λ2
i rix/2.

6. Model H94
Throughout this section we restrict attention to model H94 for which y = Λiz/2

(see (5.10)) and in consequence the inner-sphere boundary S is located at y = yi(s):

yi :=
Λizi

2
= 2
√−δΛSx with δΛS :=

Λ2
i ri

8
(6.1)

for 06 − x = O(δΛS) and illustrated in figure 3(b) (the corresponding plot for model
K-S is shown in figure 3(a) for comparison). Our primary interest is the influence of
the boundary location on the flow in the neighbourhood of the equator to the inner
sphere on the radial s-scale O(Λ2) and corresponding axial z-scale O(Λ) identified by
(6.1). As noted in (5.26), when

Λ = O(E1/5) equivalently ∆S = O(1), (6.2a)

where

∆S :=
δH

δΛS
, (6.2b)

the z-scale δHS of the Hartmann–Stewartson layer stump given by (5.25) is O(Λ) too.
So in this parameter range the analysis of that layer given in § 5.2 ceases to be valid,
because the inner-sphere boundary condition can no longer be applied on z = 0.

To resolve the true nature of the resulting equatorial region, we need to consider
the outer magnetogeostrophic layer MG and the inner Hartmann–Stewartson layer
HS taking proper account of the location of the inner-sphere boundary and its
associated Ekman–Hartmann surface layer. Their relative sizes depend on whether
∆S is large or small. When E1/3 � Λ � E1/5 (∆S � 1), the surface layer is an
E1/2-Ekman layer thickening to an E2/5-equatorial Ekman layer EE of axial extent
O(E1/5) contained within the Hartmann–Stewartson layer stump, as illustrated in
figure 4. When Λ = O(E1/5), the stump collapses into the surface layer, which for
E1/5 � Λ � 1 (∆S � 1) re-emerges as an (E/Λ)1/2-equatorial Hartmann layer EH
of circumferential extent O(Λ), as illustrated in figure 5.

In the subsections below, we address the nature of the magnetogeostrophic flow in
§ 6.1, solve the Ekman–Hartmann layer equations for ∆S � 1 in § 6.2.1 and discuss
briefly the form of the Hartmann–Stewartson layer for ∆S � 1 in § 6.2.2. Then in
§ 6.3 we summarize our findings for the strength Z of the tangent cylinder singularity
for the entire range Λ� 1.
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E HS

x
E2/5 (E/K)1/2

z

EE

E1/5

–E2/5

MG

E1/2

K3/2

Figure 4. The dimensions of the Hartmann–Stewartson stump (HS), Ekman (E) and the equatorial
Ekman (EE) layers for model H94, when E1/3 � Λ� E1/5. All boundaries are marked by broken
lines. These layers are surrounded externally by the magnetogeostrophic (MG) layer.

E

x
(E/K)1/2

EH

MG
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z

Figure 5. As in figure 4, when E1/5 � Λ� 1 except that the HS and EE layers have merged into
a single equatorial Hartmann (EH) layer.

6.1. Magnetogeostrophic flow

The magnetogeostrophic solution of (5.4) with E = 0 is, of course, potential so that
we can continue to express ψ+iϕ as an analytic function of Z := x+iy. The solution
which satisfies (5.5) on the inner-sphere boundary S defined by (6.1) and matches
with (5.15) in the overlap region δΛS � |Z | � ΛiHi is

ψ + iϕ = ψM + iϕM := i[
√
δΛS − (Z + δΛS)1/2], (6.3a)
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where we have used the property

(Z + δΛS)1/2 =
√
δΛS + i (−x)1/2 on S. (6.3b)

Interestingly it removes the singularity at the origin exhibited by the far-field solution
(5.15) and shows that radial s-scale of the solution is never less than O(δΛS) in the
fluid region.

The removal of the singularity has striking consequences with regard to our measure
AM(z), defined by (5.8a). For upon use of (6.3), the value (5.17a) of the integral (5.8b)
is

G(y) = GM(y) := − [
√
y2 + δ2

ΛS − δΛS]1/2

2
√

2
√
y2 + δ2

ΛS
. (6.4a)

So unlike the earlier result (5.17b), which diverges as y ↓ 0, the new limit is zero;
G(0) = 0. More precisely, it exhibits the asymptotic behaviour

GM(y) ∼



− 1

2
√

2
y−1/2 for y � δΛS

− 1

4
√

2
δ
−1/2
ΛS at y =

√
3δΛS

−1

4

y

δ
3/2
ΛS

for y � δΛS,

(6.4b)

where we have included the local minimum value at y =
√

3δΛS.
The above result is very revealing as it shows a reversed sign contribution to AM

near the equator of the inner sphere, which reduces the size ofAM(z), once z decreases
below (

√
3/4)riΛi. Of crucial importance in determining the realized value ofAM is the

location of the viscous cut-off z = δHS . Essentially, it says that as the width of the vis-
cous boundary layer shrinks so doesAM; the structure of that layer is discussed below.

6.2. Viscous sublayer

6.2.1. Equatorial Hartmann layer (∆S � 1)

Here we restrict attention to the small-∆S limit

E1/5 � Λ� 1 (6.5)

and investigate the nature of the equatorial Hartmann layer EH of width δH attached
to the surface of the inner sphere near its equator x = z = 0. This shellular layer
only intersects the tangent cylinder for a height O((riδH )1/2) above the equator so
determining the domain of influence on the value of AM. To the order of accuracy
attempted here our modus operandi is to simply add to the magnetogeostrophic
solution (6.3) the approriate boundary layer correction.

For the case of stress-free boundaries employed by H94, we require the radial
derivative of the tangential velocity to vanish on the inner sphere S. According to
(5.2) at lowest order that requires the vorticity to vanish:

∂2ψ

∂x2

∣∣∣∣S = 0,
∂2ϕ

∂x2

∣∣∣∣S = 0. (6.6)

On the other hand, the magnetogeostrophic values determined by (6.3) and (6.1) are

∂2ψM
∂x2

∣∣∣∣S + i
∂2ϕM
∂x2

∣∣∣∣S =
i

4δ
3/2
ΛS

[
1 + i

Λiz

4δΛS

]−3/2

. (6.7)
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The non-zero value of the vorticity, implied by (6.7), in the magnetogeostrophic
flow is brought to zero across a Hartmann layer in which we set

∂2ψ

∂x2
=

1

4δ
3/2
ΛS
P, ∂2ϕ

∂x2
=

1

4δ
3/2
ΛS
Q, (6.8a)

which we partition into magnetogeostrophic (M) and Hartmann (H) contributions

P := PM +PH, Q := QM + QH. (6.8b)

Here the magnetogeostrophic part is given by the second x-derivative of (6.3a),
namely

QM − iPM = (1 + i2
√

∆SY + ∆SX)−3/2, (6.9a)

where

X =
x

δH
, Y =

y

2
√
δΛSδH

. (6.9b)

For small ∆S, the Binomial expansion of (6.9a) yields

PM = 3∆
1/2
S Y + O(∆

3/2
S ), QM = 1− 3∆S

2
(X + 5Y 2) + O(∆2

S). (6.9c)

Substitution of (6.8a) into (5.4) shows that(
∂2

∂X2
− 1

)
∂Q
∂X

=
∆

1/2
S
2

∂P
∂Y

, (6.10a)

(
∂2

∂X2
− 1

)
∂P
∂X

= −∆
1/2
S
2

∂Q
∂Y

, (6.10b)

where according to (6.7)

P = 0, Q = 0 on the boundary S : Y =
√−X. (6.11)

Since the third-order X-derivatives of PM and QM are so small, their contribution to
(6.10) can be neglected. Under that approximation PH and QH satisfy (6.10), whose
solution satisfying the boundary condition (6.11), is

PH = P̂H exp [−(X + Y 2)], QH = Q̂H exp [−(X + Y 2)], (6.12a)

where

P̂H = −∆
1/2
S Y [3 + 1

2
(X + Y 2)] + O

(
∆

3/2
S
)
,

Q̂H = −1 + ∆S{6Y 2 + 1
8
[(Y 2 − 1

2
)(X + Y 2)2 + (13Y 2 − 15

2
)(X + Y 2)]}+ O(∆2

S).

(6.12b)

We now express (5.8b), namely

G(y) = GM(y) + GH(y), (6.13a)

as the sum of the magnetogeostrophic contribution (6.4) and the Hartmann layer
contribution GH(y). The y = 0 value

G(0) = GH(0) =

√
δH

2δΛS

∫ ∞
0

QH|X=0 dY (GM(0) = 0) (6.13b)
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is evaluated using the expansion (6.12); in turn (5.8a) yields

AM + 2im = −2im

(
2

ri

)3/2
Hi

√
πδH

Λ2
i

εΛY(∆S)ΦM(0), (6.14a)

where

Y(∆S) =
2√
π

∫ ∞
0

QH|X=0 dY = 1− 63
16

∆S + O(∆2
S). (6.14b)

Significantly, we can also establish from (6.12) that

2√
π

∫ ∞
0

∂2QH
∂x2

∣∣∣∣
X=0

dY = Y(∆S) + O(∆2
S). (6.14c)

It is consistent up to O(∆S) with (1.8a) and (2.4b) which require

AM +Aν = −2im. (6.14d)

6.2.2. Hartmann–Stewartson layer and ∆S � 1

Let us briefly recap the situation for large ∆S, as it may be deduced directly from
the problem (6.10), (6.11). For though its complete solution is not readily obtained, we
may, as in § 5, take advantage of the long Y length scale and apply the inner-sphere
boundary condition on Y = 0. We, therefore, integrate (6.10a) from Y = 0 to ∞ and
use the boundary values of PH at z = 0 and Hi to obtain(

∂2

∂X2
− 1

)[∫ ∞
0

QH dY

]
=


1

∆S(−X)1/2
for X < 0

0 for X > 0
(∆S � 1) . (6.15)

Its solution, undertaken in § 4.2.2(b), leads to the result (4.31), which we noted via
(5.11) continues to hold in the range E1/3 � Λ� E1/5 appropriate here.

In summary, (4.31) and (6.14) imply that

Z =


√
πHi

Λiri
εΛ∆

−1/2
S |ΦM(0)| for E3/7 � Λ� E1/5

√
πHi

Λiri
εΛ∆

1/2
S Y(∆S) |ΦM(0)| for E1/5 � Λ� 1.

(6.16)

The interesting aspect of our results for E1/5 � Λ � 1 is that Z decreases as Λ
increases, a point which is more readily seen from (6.19) below. Also of note is the
fact the value of Z is of order unity (again see (6.19)) when Λ = O(E3/25) and
thereafter E3/25 � Λ � 1 is small. Nevertheless, the most important feature of the
two asymptotic results (6.16) is that they are of the same order of magnitude, when
∆S = O(1) (i.e. Λ = O(E1/5)).

Clearly at fixed small E, the maximum Zmax of Z and its location Λ = Λmax
occurs when ∆S = O(1). The determination of their exact values, therefore, requires
the solution of the boundary layer problem (6.10), (6.11) when ∆S = O(1). Since that
substantial task has not been undertaken, we simply note that under the lowest-order
approximation Y(0) = 1, the maximum value of Z predicted by equality on each
range in (6.16) is

Z =

√
πHi

Λiri
εΛ |ΦM(0)| (6.17a)
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Figure 6. Numerical results for the measure Z plotted vs. Λ at fixed E = 10−4.0, 10−4.5, 10−5.0

and 10−5.5. Each case is identified by its local maximum Zmax at Λmax, as itemized in table 1. The
maxima shown increase with decreasing E.

which occurs when

∆S = 1. (6.17b)

Of course, this happens outside the range of validity of both asymptotic values.
Even more seriously, the power series (6.14b) for Y(∆S) has clearly failed at ∆S = 1
very badly! The estimate (6.17a) is therefore likely to considerably overestimate the
true maximum value Zmax and likewise (6.17b) provides an unreliable estimate of
its location Λmax. Only the orders of magnitude can be trusted from a quantitative
viewpoint.

6.3. Comparison with numerical results

The parameter values employed by H94 are

ri = 1
2
, ro = 3

2
, Hi =

√
2, m = 1,

δEe = E1/4, δEp =
E2/7

21/7
, εE =

E1/28

21/7
, ∆E =

Λ1/2

21/7E3/14
,

δΛe = Λ1/2, δΛp =
Λ2/3

21/3
, εΛ =

Λ1/6

21/3
, ∆Λ =

21/3E1/2

Λ7/6
,

Λi = Λ, δΛS =
Λ2

16
, δH =

E1/2

Λ1/2
, ∆S =

16E1/2

Λ5/2
.


(6.18)

Further numerical evaluations of Z, as a function of Λ, at four small distinct values
of E have been undertaken and the results are illustrated in figure 6. The general
trends agree well with our asymptotic predictions (4.8) and (6.16) for the parameter
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E 10−4.0 10−4.5 10−5.0 10−5.5

Zmax 2.61 3.25 4.06 5.09
Λmax 0.064 0.061 0.057 0.053

Table 1. The value of Zmax and Λmax for the numerical results portrayed in figure 6.

values (6.18):

Z ∼



[
1 +
√

2
Λ

E1/2
+
Λ

E

]1/2

+ O
(
E1/28

)
for Λ6O(E1/2),

Λ

E1/2

[
1 + O

(
Λ1/2

E3/14

)]
for E1/2 � Λ� E3/7,

22/3
√

2πK0

Λ5/12

4E1/4

[
1 + O

(
E1/4

Λ7/12

)]
for E3/7 � Λ6O(E1/3),

22/3
√

2πK0

Λ5/12

4E1/4
for E1/3 � Λ� E1/5,

22/3
√

2πK0

4E1/4

Λ25/12

[
1− 63

E1/2

Λ5/2
+ O

(
E

Λ5

)]
for E1/5 � Λ� 1,

(6.19)
where K0 is defined by (B 3b). The errors itemized are O(εE), O(∆E) (see (4.19)) and
O(∆S) (see (6.14)) respectively.

The numerically determined maximum values Zmax are itemized in table 1. For
comparison, our asymptotic estimated ‘maximum’, where the lowest-order values of
the last two entries of (6.19) coincide (see (6.17)), is

Z =
√
πK0 (2E)−1/6 occurring at Λ = 28/5E1/5, (6.20)

a formula which substantially overestimates Λmax. Furthermore, if we include the
correction term in the expression for the last entry, we see that the resulting expression
achieves a local maximum at

Λ =

(
693

5

)2/5

E1/5. (6.21)

Now, even for E = 10−5.5, the smallest value employed in the numerics, the realized
value is Λ ≈ 0.57, which is about 10 times too large. A more reassuring feature of
the numerical results is that Zmax appears to scale as E−0.194 which is close to the
analytic prediction E−1/6.

The correction terms and error estimates in (6.19) are very illuminating. They
clearly explain why we cannot expect quantitative agreement with the numerics in
the range of parameters employed. On the one hand, for small Λ = O(E1/2) the
error terms O(E1/28) are only negligible when E is extremely small. On the other, for
relatively large Λ = O(E1/5) we still need to reduce E by several orders of magnitude
before the value of Λ mentioned in (6.21) is numerically small and only for values of
Λ large compared to that is the last entry of (6.19) likely to be reliable.
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7. Conclusions

Our analytic development has extended K-S’s earlier study of axisymmetric shear
layers on the tangent cylinder to the non-axisymmetric case. In that respect the most
significant finding is the nature of the new quasi-geostrophic shear layers important
in the range Λ � E1/3. In contrast, the asymmetry of the flow does not influence
the ageostrophic boundary layer structures, which gain importance for larger field
strengths E1/3 � Λ � 1. Nevertheless, we emphasize that the axial length scale
of the Hartmann–Stewartson layers attached to the equator of the inner sphere is
controlled by the strength of the local radial field bs there. So whereas bs|z=0 vanishes
for the dipole parity of K-S, it is non-zero for the quadrupole parity of H94. In that
case, the stronger equatorial magnetic field quenches the shear more effectively and
consequently the Hartmann–Stewartson layer evaporates once Λ exceeds E1/5. Since
these results do not depend on asymmetry, our analysis of § 6 of model H94 also
applies to the axisymmetric version of K-S’s problem with quadrupole field.

The motivation for the present study stemmed from H94’s numerical results, which
have been extended here and illustrated in figure 6 to provide a clear picture of the
strength Z of the tangent cylinder singularity. The increase in Z at low Λ visible
in the figure is consistent with the quasi-geostrophic analytic results. Though one
might expect that, once Λ exceeded E1/3 and the flow is magnetogeostrophic almost
everywhere, the confinement of the shear into relatively small viscous layers would
eliminate the singularity, it is not, however, the case. Instead, while the Hartmann–
Stewartson layer stump attached to the equator of the inner cylinder has a finite size,
there are strong shears located in it that continue to increase the realized value of Z.
For magnetic fields with dipole parity that state of affairs continues for all Λ � 1;
we can only speculate that Z decreases with further increase of Λ.

For the quadrupole parity state of H94, the analytic results paint a clearer picture.
The finite radial magnetic field removes much of the singular behaviour of the
magnetogeostrophic flow near the equator of the inner sphere and the Hartmann–
Stewartson layer stump disappears when Λ = O(E1/5). There only remains a weak
singularity associated with the equatorial Hartmann layer. Though it is only possible
to make analytic progress in the range E1/5 � Λ � 1, the asymptotics of § 6.2.1
clearly highlight the structure of that layer and identify what contributes to the value
of Z, which now decreases with Λ. The local maximum identified tentatively by
(6.21) cannot be taken seriously and only provides a rather generous quantification
of a lower bound on Λ at which the expansion breaks down. As pointed out in
§ 6.2.2, the solution of the boundary layer problem for ∆S = O(1) is also needed in
order to identify the behaviour near the maximum of Z and to obtain any possible
quantitative agreement with the numerics.

We should stress that the detailed nature of the results of § 6.2.1, which are central
to comparison with the numerical results, depend on the inner-sphere boundary being
slippery. In the rigid case we must replace (6.6) with no-slip boundary conditions,
which presumably at the very least alter the powers of ∆S in the expansions of the
solution.

As in K-S, a very complicated nesting of boundary layers exists on the tangent
cylinder in the various parameter ranges considered, as illustrated schematically in
figure 2. We have been careful to check the consistency of our scaling laws by taking
the asymptotic solutions beyond lowest order where possible. The delicate nature of
the ordering and scaling is emphasized by the narrow parameter bands in (6.19).
Evidently for Λ � E1/5, the error terms in (6.19) are only small for extremely small
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numerical values of E. At first sight, E1/5 � Λ� 1 would appear to be a promising
range for quantitative comparison with the numerical results illustrated in figure 6.
Unfortunately the large coefficient 63 in (6.19) again limits the validity of the results
to values of E smaller than those employed. We, therefore, conclude that though
the analytic results are consistent with the numerical results, smaller values of E are
required to obtain quantitative agreement.

We thank Mike Proctor and anonymous referees for helpful comments. The sup-
port of both PPARC grant numbers GR/K06495 and GR/L40922 is gratefully
acknowledged.

Appendix A. The key length scales and parameter ratios
Here we summarize the key parameters. We begin with the length scales outside

and inside the tangent cylinder:

δEe :=

(
EHi

m

)1/4(
Hi

2

)1/4

, δΛe :=

(
ΛiHi

m

)1/2(
Hi

2

)1/2

,

εEδEe = δEp :=

(
EHi

m

)2/7 (ri
2

)1/7

, εΛδΛe = δΛp :=

(
ΛiHi

m

)2/3 (ri
2

)1/3

,

εE :=

(
EHi

m

)1/28 (ri
2

)1/7
(

2

Hi

)1/4

, εΛ :=

(
ΛiHi

m

)1/6 (ri
2

)1/3
(

2

Hi

)1/2

.


(A 1)

They are related to the Hartmann length scale by

δ
7/4
Ep

δ
3/4
Λp

=
δ2
Ee

δΛe
= δH :=

(
E

Λi

)1/2

, (A 2a)

which in turn, yields

∆
1/3
E = ∆

−1/7
Λ =

εΛ

ε2E
=

(
Λ

1/3
i

E1/7

)1/2(
riH

2
i

2m2

)1/21

, (A 2b)

where

∆E :=
δEp

δH
, ∆Λ :=

δH

δΛp
. (A 2c)

The H94 model with stress-free boundaries also involves

δΛS :=
Λ2
i ri

8
, ∆S =

δH

δΛS
. (A 3)

The Ekman suction associated with rigid boundaries involes the parameters

σo =

(
ro

2mHi

)1/2

, σi =

(
ri

2mHi

)1/2

. (A 4)

Appendix B. Higher-order magnetotopographic corrections
Here we extend the analysis of § 4.2.2(a) of the outer magnetogeostrophic layer and

outline the O(εΛ) corrections to the solution of the problem (4.24). To achieve this
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aim, we also incorporate the Hartmann jump condition and replace the boundary
condition (4.24b) by (4.35). With (4.30b) it gives

dΦM
dη

(0) + i∆
1/2
Λ

√
π

2
ΦM(0) = eiπ/4(1− εΛΦM(0)). (B 1)

The solution of (4.24a) subject to the boundedness condition (4.24c) is

ΦM + εΛ
√−η = −K exp

(
− i5π

12

)
Ai′(τ)
Ai′(0)

− εΛ
π

22/3
exp

(
iπ

6

)
Gi′(τ),

dΦM
dη

= −K 21/3 exp

(
iπ

4

)
Ai(τ)

Ai′(0)
− εΛ

π

21/3
exp

(
5iπ

6

)
Gi(τ),

 (B 2a)

in which K is a constant, yet to be determined, τ is defined by (4.25b) and Gi(τ) is
closely related to the Airy function:

Ai(τ) :=
1

π

∫ ∞
0

cos

(
ρ3

3
+ τρ

)
dρ and Gi(τ) :=

1

π

∫ ∞
0

sin

(
ρ3

3
+ τρ

)
dρ (B 2b)

(see Abramowitz & Stegun 1965, § 10.4).
Evaluation of (B 2a) at η = 0 in conjunction with the boundary condition (B 1)

gives

ΦM(0) = −K exp

(
− i5π

12

)
− εΛK0K1

2
exp

(
iπ

6

)
,

1−
[
εΛ + ∆

1/2
Λ

√
π

2
exp

(
− iπ

4

)]
ΦM(0)

= exp

(
− iπ

4

)
dΦM

dη
(0) =

K
K0

+ εΛ
K1

2
exp

(
−5iπ

12

)
,


(B 3a)

where

K0 := − Ai′(0)

21/3Ai(0)
=

(
3

2

)1/3
Γ(2/3)

Γ(1/3)
=

61/3

2
√
π

Γ

(
5

6

)
= 0.57862 . . . ,

K1 :=
22/3π

31/2
Ai(0) =

Γ(1/3)

32/321/3
= 1.08626 . . . .

 (B 3b)

They determine

ΦM(0) = −K0 exp

(
− i5π

12

) 1− εΛK1 exp

( − i5π

12

)
1−K0

[
εΛ exp

( − i5π

12

)
+ ∆

1/2
Λ

√
π

2
exp

(
− iπ

6

)] .
(B 4)
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